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to R. This issue has been addressed by recent work on so-called incremental and adaptive conditionestimators.Incremental condition estimation [3, 5] is anO(n) scheme to arrive at an estimate for the conditionnumber of R̂ when R̂ = � R w
 � ;that is, R̂ is R augmented by a column. This estimator is well suited for restricting column exchangesin rank-revealing orthogonal factorizations [1, 2, 4, 6].Adaptive condition estimation schemes address the issue of rank-one updates of a triangular ma-trix R. Pierce and Plemmons [17, 16] suggest an O(n) scheme and Ferng, Golub, and Plemmons [11]an O(n2) scheme for the situation wherêRT R̂ = RTR+ uuT :These schemes are designed for recursive least-squares computations in signal processing. Shro� andBischof [18] extend this work to the general rank-one updateR̂ = R+ uvT ;which appears for example in many optimization algorithms. The key di�erence between these two
avors of condition estimators is that incremental condition estimation obtains condition number es-timates of a triangular factor that grows, whereas adaptive condition estimation maintains conditionestimates when information is added or extracted from an already existing factorization.In this paper, we generalize incremental condition estimation to estimate any number of extremalsingular values (and the corresponding vectors) instead of just the largest or smallest one as theoriginal incremental condition estimation scheme suggested. In Section 2 we show how we canestimate k extremal singular values by computing the eigensystem of a (k+ 1)� (k + 1) symmetricrank-one perturbed diagonal matrix, and we give some examples of how this scheme could be used.In Section 3 we discuss the issues that arise in the accurate solution of this eigensystem in 
oating-point arithmetic. In Section 4 we present numerical experiments showing that the scheme deliversgood singular value estimates and that, in particular, it delivers more reliable estimates for thesmallest singular value than the original incremental condition estimation (ICE) scheme. Lastly, wepresent some concluding remarks and suggest some problems where it is useful to obtain estimatesof several extremal singular values and vectors.2 Derivation of the Generalized Incremental Condition Es-timation SchemeAssume that we are interested in estimating k extremal singular values �i1 ; : : : ; �ik (ij < ij+1) ofan m�m upper triangular matrix R. Our scheme will be able to estimate extremal singular valuesat both ends of the spectrum. Thus, for k = 3, for example, we have four choices: (i1; i2; i3) =(1; 2; 3); (1; 2;m); (1;m� 1;m); and (m� 2;m� 1;m). Further assume that we have singular valueestimates �1; �2; : : : ; �k and a corresponding set of orthonormal approximate left singular vectors xj,that is, kxHj Rk2 = �j; �j � �ij ; j = 1; : : : ; k;and XHX = I, where X = [x1; : : : ; xk].Our goal is to obtain updated singular value estimates �̂i; �̂2; : : : ; �̂k and corresponding approxi-mate singular vectors x̂1; x̂2; : : : ; x̂k for the augmented matrixR̂ = � R w
 � ;2



where w is an m-vector and 
 a scalar. A scheme that accomplishes this task cheaply (that is, in lessthan O(n2) work), is called an ICE(k) estimator. We present the derivation for complex matrices,which is in particular applicable to real matrices.As was mentioned in [7], incremental condition estimation can be motivated by the followingwell-known projection property of singular values. Let A be an n� n complex matrix and Y be ann � l, l � n, complex matrix of orthonormal columns, that is, Y HY = I. Then,�1(A) � �1(Y HA); �2(A) � �2(Y HA); : : : ; �l(A) � �l(Y HA) (2:1)and �n(A) � �l(Y HA); �n�1(A) � �l�1(Y HA); : : : ; �n�l+1(A) � �1(Y HA): (2:2)The ICE scheme suggested in [3, 7] applies these inequalities to estimate either �max or �min asfollows. We have kxH1 Rk2 = �1; where �1 � �max or �1 � �min:We let k = 1, A = R̂ = �R w
 � ; Y = �x 1 � 2 jC(m+1)�2; and l = k + 1 = 2:Inequalities 2.1 and 2.2 suggest that we calculate the extreme singular values and vectors of Y HAin order to estimate the extremal singular values of A. To this end, we consider the eigensystem ofM = Y HAAHY= Y HR̂R̂HY= � �21 0 �+ ��
 � [��; �
] ; where � = xH1 w.Denoting M 's eigenvalues by �1; �2, where �1 � �2, and the corresponding eigenvectors by z1 andz2, we obtain the following ICE(1) estimates for R̂:� �̂1 = p�1 and x̂1 = Y z1�̂1 = p�2 and x̂1 = Y z2� if � �̂1 � �max(R)�̂1 � �min(R) � :This scheme can be generalized as follows. Assume we have approximate singular vectors xj ; j =1; : : : ; k corresponding to the k extremal singular values �i1; �i2 ; : : : ; �ik of A. That is,kxHj Rk2 = �j; �j � �ij ; j = 1; : : : ; k;and XHX = I, where X = [x1; : : : ; xk]. Now letA = R̂ = �R w
 � ; Y = �x1 � � � xk 00 � � � 0 1 � 2 jC(m+1)�k+1; and l = k + 1:To calculate the extreme singular values of Y HA, we compute the eigensystem of M = Y HAAHY .Denote M 's eigenvalues by �1; �2; : : : ; �l, where �j � �j+1, and denote the corresponding eigenvec-tors by z1; z2; : : : ; zk+1. Suppose that the �rst ` estimates �1; �2; : : : ; �` approximateR's large singularvalues, �1 � �1(R); �2 � �2(R); : : : ; �` � �`(R), and suppose that the remaining k � ` estimates ap-proximate R's small singular values, �k � �m(R); �k�1 � �m�1(R); : : : ; �`+1 � �m�(k�`�1)(R). Wethen use �̂j's as new estimates for R̂ de�ned by�̂j =p�j; x̂j = Y zj ; j = 1; 2; : : :; `;3



and �̂j =p�j+1; x̂j = Y zj+1; j = `+ 1; `+ 2; : : : ; k:We have, therefore, kx̂Hj R̂k2 = �̂j ; j = 1; 2; : : :; k;and X̂HX̂ = I. The �rst ` of the �̂j 's approximate R̂'s large singular values, and the remaining k�`approximate R̂'s small singular values. Moreover, from the Inequalities 2.1 and 2.2, we have�̂1 � �1(R̂); �̂2 � �2(R̂); : : : ; �̂` � �`(R̂);and �̂k � �m(R̂); �̂k�1 � �m�1(R̂); : : : ; �̂`+1 � �m�(k�`�1)(R̂):Hence, our scheme will underestimate the large singular values and overestimate the small ones.To illustrate the scheme, let us consider k = 4 and ` = 2, that is, �1 � �1(R); �2 � �2(R); �3 ��m�1(R), and �4 � �m(R). We let Y = �x1 x2 x3 x4 00 0 0 0 1 �and M = Y H R̂R̂HY , a 5 � 5 Hermitian matrix. Denote M 's eigenvalues by �1; �2; : : : ; �5 and itseigenvectors by z1; z2; : : : ; z5. We now take M 's two extreme large and two extreme small singularpairs to construct our estimates for R̂:�̂1 =p�1; �̂2 =p�2; �̂3 =p�4; �̂4 =p�5;and x̂1 = Y z1; x̂2 = Y z2; x̂3 = Y z4; x̂4 = Y z5:The computational cost of our scheme involves the computation ofM 's eigensystem and kmatrix-vector multiplications Y zj. The matrix-vector multiplications cost 2mk2 
ops total. This is thedominant cost, since our choice of Y gives M a simple structure:M = �x1 : : : xk 00 : : : 0 1�H �R w
 � �RHwH �
 ��x1 : : : xk 00 : : : 0 1�= 266664 �21 �22 . . . �2k 0 377775+ 266664�1�2...�k
 377775 [ ��1 ��2 : : : ��k �
 ] ; where �j = xHj w.Thus,M is a symmetric rank-one perturbed diagonal matrix. The eigensystems of such matrices havebeen well studied theoretically (see [8, 12, 13] for example), and they can be computed considerablymore e�ciently than those of general l � l matrices. However, the computation of M 's eigensystemusing 
oating-point arithmetic was not resolved satisfactorily until the recent work of Sorensenand Tang [19]. We therefore devote the next section to discussing the computational issues of ourcondition estimation scheme. 4



3 Eigensystems of Symmetric Rank-One Perturbed Diago-nal MatricesThe structure of M can be expressed asM = 2664 �1 �2 . . . �l 3775+ �2664 �1�2...�l 3775 [ ��1 ��2 : : : ��l ]= D + �bbH ; � > 0 and kbk2 = 1:By applying the de
ation techniques in [8, 19] if necessary, we can assume �1 > �2 > : : : �l andj�j j > " for j = 1; 2; : : : ; l, where " is the machine precision. As the derivation of our generalizedICE scheme suggests, the mutual orthogonality of the approximate singular vectors of M is crucial.Consequently, it is important that the computed eigenvectors of M be numerically orthogonal. Asit turns out, ful�lling this requirement is not a straightforward task.With the assumptions that �1 > �2 > : : : > �l and j�j j > " (in particular, that j�j j > 0), M 'seigenvalues �1; �2; : : : ; �l satisfy the well-known interlacing property�1 > �1 > �2 > �2 > : : : > �l > �l:An eigenvector corresponding to �j is given by2664 �1 � �j �2 � �j . . . �l � �j 3775�1 � 2664 �1�2...�l 3775 :Thus, provided that the di�erences �ij � �i � �j , j = 1; 2; : : : ; l, can be computed to full machineprecision, each component of the computed eigenvectors will be fully accurate, yielding a set ofnumerically orthogonal eigenvectors.A standard approach to determine the di�erences �ij is to numerically solve for the roots of thesecular equation (see [8] for example):f(�) = 1 + � lXj=1 j�j j2�j � �:Although di�erent root �nders had been proposed [8, 10], none could always guarantee numericalorthogonality | all failed occasionally in a few examples, either contrived or natural. Only recentlydid the analysis in [19] explain that there is an intrinsic di�culty related to the accuracy in whichf is evaluated. It was shown there that, for any given j, the magnitude"maxi j�i=(�i � �j)jf 0(�j)is a key indicator of the accuracy of the calculated di�erences �ij. In particular, since j�jj � " for j =1; 2; : : : ; l, the resulting bounds obtained for those magnitudes imply that numerical orthogonalityis guaranteed provided f is evaluated in a precision that doubles the working precision. An e�cientalgorithm ful�lling this requirement without the need of a double-precision data type is also givenin [19]. We have employed this eigensystem solver throughout our condition estimation scheme.5



4 Numerical ResultsOur experiments were designed to answer several questions. First, we wished to see how much betterthe original scheme is in estimating the smallest singular value of a matrix, since this is the di�cultpart in obtaining a reliable two-norm condition number estimate. Second, we wished to get someidea of how the accuracy of the generalized schemes varied as we increased k. Lastly, we wishedto get a feeling for the accuracy with which the generalized schemes estimate the other extremalsingular values whose estimates are being maintained.In our tests, we employed various triangular matrices. For the �rst class of matrices, we chosen singular values �1; �2; : : : ; �n (not necessarily in order) from [0; 1] according to some speci�eddistribution. Then, we employed Stewart's method [20] to generate random orthogonal matrices Uand V . The upper-triangular matrices R used in testing were the R factor of the QR decomposition,QR = Udiag(�1; �2; : : : ; �n)V T :Three distributions for the singular values were used:Cluster: ten singular values were chosen randomly from the interval ["; 4"]; the rest were chosenrandomly from the interval ("; 1].Exponential: the singular values were 1; r; r2; : : : ; rn�1 = 10�10.Randomlog: the singular values were random numbers in the range [10�6; 1] such that their loga-rithms were uniformly distributed.Other matrices wereRandom: R was the upper triangular factor of a QR factorization of a full matrix with elementsuniformly random distributed in (0; 1).Di�cult: R was generated so as to be a \di�cult" matrix for the ICE(1) scheme for estimating thesmallest singular value and was generated as follows. Given an m�m triangular matrix T (m),and an approximate smallest left singular vector of T as generated by the ICE(1) scheme, weaugmented T by generating a random m-vector z, subtracting most of its contribution in thedirection of x. We then adjusted the diagonal entry 
 such thatT (m + 1) = � T (m) z
 �was not too ill conditioned. Starting with m = 2, we thus built up an n � n matrix. As wasshown in [3], the ICE(1) scheme can produce arbitrarily bad estimates when z is orthogonalto x. While this is not the case here, these matrices should be more likely than others to causethe ICE(1) scheme to produce large overestimates of the smallest singular value.4.1 Accuracy of ICE(k) Estimates for Estimating the Smallest SingularValueOur �rst set of experiments was designed to show to what extent the generalized ICE schemeimproves the estimate for the smallest singular value. Letrmin(k) � �min(k)�min ;where �min(k) is the estimate for �min produced by the ICE(k) estimate with ` = 0, that is, the ICE-vectors are approximations of the singular vectors corresponding to the k smallest singular values.6



Table 1: ICE(2) versus ICE(1)rmin(1) rmin(2) rmax(1) rmax(2)Distribution Median Worst Median Worst Median Worst Median WorstExponential 3.10 4.47 2.82 3.63 1.24 1.82 1.17 1.72Randomlog 3.03 5.73 2.70 5.62 1.20 1.66 1.14 1.60Cluster 4.75 17.00 3.89 9.92 1.15 1.26 1.13 1.21Random 4.31 17.28 3.15 9.82 1.00 1.01 1.00 1.00Di�cult 1.06 2181.30 1.03 15.18 2.18 2.54 1.66 2.09Thus, rmin(k) is an overestimate of the smallest singular value by an ICE(k) estimate. Figure 1shows average and maximum values of rmin(k), where k ranges from 1 to 6. The experimentsre
ect 50 trials with 50�50 matrices having a \random", \exponential", and \cluster" distribution.For example, for the `random' distribution, the worst-case value for rmin(1) is 16.7, whereas theworst-case value for rmin(2) is 6.4. In contrast, the average overestimate decreases from 3.8 to 2.9.These results (as well as the results in the other plots, though in a somewhat less spectacular way)suggest that the increase in accuracy for the smallest singular value is not very pronounced onaverage, but that (as expected) the generalized ICE schemes are more robust, in that the worst-caseoverestimate is reduced signi�cantly. The plots also suggest that for the purposes of estimating onlythe smallest singular value, using k = 2, that is ICE(2), seems to be fully su�cient, and that theadded computional cost for higher-degree ICE schemes is not rewarded by great improvements inthe estimate for �min.4.2 ICE(2) Estimates for the Largest or Smallest Singular ValuesThe experiments of the preceding section prompted us to investigate the behavior of the ICE(2)estimator in more detail. Table 1 shows (for k = 1; 2) the median and worst-case values for rmin(k)and rmax(k) � �max�max(k) ;where �max(k) is the estimate for the largest singular value of R using an ICE(k) estimator thatapproximates the k largest singular values. These experiments re
ect 100 trials with matrices of size100 and 200 each. As was suggested by the previous round of experiments, the generalized schemedoes prevent \outliers" and increases the average accuracy of the condition estimation scheme. Thispoint is made in a particularly impressive fashion by the \di�cult" matrices. As mentioned before,they were designed to break the ICE(1) scheme, and they did. On one matrix, the ICE(1) schemeoverestimates the smallest singular value by a factor of more than 2,000. Equally surprising to us,however, was the fact that the median overestimate for this distribution was only 1.06. Using theICE(2) scheme, the large overestimates disappear. The improvement realized by the ICE(2) schemein estimating �max was somewhat disappointing, largely in view of the already good performance ofthe ICE(1) scheme.While our exploration of the generalized ICE scheme was mainly motivated by the desire todevelop a more robust condition estimator, the ICE(2) schemes we employed also produce estimatesfor �n�1 and �2. In Table 2 we display the median and worst-case values ofrn�1 � �n�1�n�17


